Vaccinia virus and Cowpox virus are not susceptible to the interferon-induced antiviral protein MxA
نویسندگان
چکیده
MxA protein is expressed in response to type I and type III Interferon and constitute an important antiviral factor with broad antiviral activity to diverse RNA viruses. In addition, some studies expand the range of MxA antiviral activity to include particular DNA viruses like Monkeypox virus (MPXV) and African Swine Fever virus (ASFV). However, a broad profile of activity of MxA to large DNA viruses has not been established to date. Here, we investigated if some well characterized DNA viruses belonging to the Poxviridae family are sensitive to human MxA. A cell line inducibly expressing MxA to inhibitory levels showed no anti-Vaccinia virus (VACV) virus activity, indicating either lack of susceptibility of the virus, or the existence of viral factors capable of counteracting MxA inhibition. To determine if VACV resistance to MxA was due to a virus-encoded anti-MxA activity, we performed coinfections of VACV and the MxA-sensitive Vesicular Stomatitis virus (VSV), and show that VACV does not protect VSV from MxA inhibition in trans. Those results were extended to several VACV strains and two CPXV strains, thus confirming that those Orthopoxviruses do not block MxA action. Overall, these results point to a lack of susceptibility of the Poxviridae to MxA antiviral activity.
منابع مشابه
Vaccinia, cowpox, and camelpox viruses encode soluble gamma interferon receptors with novel broad species specificity.
Soluble receptors for gamma interferon (IFN-gamma) are secreted from cells infected by 17 orthopoxviruses, including vaccinia, cowpox, rabbitpox, buffalopox, elephantpox, and camelpox viruses, representing three species (vaccinia, cowpox, and campelpox viruses). The B8R open reading frame of vaccinia virus strain Western Reserve, which has sequence similarity to the extracellular binding domain...
متن کاملHuman MxA protein protects mice lacking a functional alpha/beta interferon system against La crosse virus and other lethal viral infections.
The human MxA protein is part of the antiviral state induced by alpha/beta interferon (IFN-alpha/beta). MxA inhibits the multiplication of several RNA viruses in cell culture. However, its antiviral potential in vivo has not yet been fully explored. We have generated MxA-transgenic mice that lack a functional IFN system by crossing MxA-transgenic mice constitutively expressing MxA with genetica...
متن کاملWest Nile virus-induced cytoplasmic membrane structures provide partial protection against the interferon-induced antiviral MxA protein.
The human MxA protein is a type I and III interferon (IFN)-induced protein with proven antiviral activity against RNA viruses. In this study, we investigated the effect of MxA expression on the replication of West Nile Virus strain Kunjin (WNV(KUN)). Pretreatment of A549 cells with IFN-alpha lead to increased expression of MxA, which contributed to inhibition of WNV(KUN) replication and secreti...
متن کاملEctromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins.
Interleukin-18 (IL-18) is a proinflammatory cytokine that plays a key role in the activation of natural killer and T helper 1 cell responses principally by inducing interferon-gamma (IFN-gamma). Human and mouse secreted IL-18-binding proteins (IL-18BPs) have recently been described which block IL-18 activity but have no sequence similarity to membrane IL-18 receptors. Several poxvirus genes enc...
متن کاملThe Human Interferon-Induced MxA Protein Inhibits Early Stages of Influenza A Virus Infection by Retaining the Incoming Viral Genome in the Cytoplasm
The induction of an interferon-induced antiviral state is a powerful cellular response against viral infection that limits viral spread. Here, we show that a preexisting antiviral state inhibits the replication of influenza A viruses in human A549 cells by preventing transport of the viral genome to the nucleus and that the interferon-induced MxA protein is necessary but not sufficient for this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017